Some axioms are quite interesting. For example, the axiom of the empty set - "an empty set exists". But I ask, how empty is it? How much nothing is contained within it? Can it contain 'one' amount, 'some' amount, 'all' amounts or 'no' amounts of nothing? If the empty set exists it surely implies that the set containing the answer to the previous question exists within a set. The only one that we know 'can' exist without needing further axioms is the only one that does not seem to make sense to a normal mind: the empty set contains no amount of nothing.

Viewcount: 644Viewcount: 546

Viewcount: 818

Viewcount: 720

Viewcount: 563

Viewcount: 553

Viewcount: 718

Viewcount: 644

Viewcount: 883

Viewcount: 257

Viewcount: 557

Viewcount: 524

Viewcount: 528

Viewcount: 535

Viewcount: 561

Viewcount: 536

Viewcount: 577

Viewcount: 507

Viewcount: 723

Viewcount: 550

Viewcount: 482

Viewcount: 494

Viewcount: 654

Viewcount: 799

Viewcount: 857

Viewcount: 582

Viewcount: 560

Viewcount: 586

Viewcount: 1050

Viewcount: 526

Viewcount: 654

Viewcount: 591

Viewcount: 694

Viewcount: 600

Viewcount: 486

Viewcount: 484

Viewcount: 552

Viewcount: 484

Viewcount: 628

Viewcount: 469

Viewcount: 596

Viewcount: 486

Viewcount: 467

Viewcount: 538

Viewcount: 551

Viewcount: 655

Viewcount: 522

Viewcount: 640

Viewcount: 436

Viewcount: 497

Viewcount: 453

Viewcount: 494

Viewcount: 487

Viewcount: 636

Viewcount: 641

Viewcount: 622

Viewcount: 541

Viewcount: 483

Viewcount: 863

Viewcount: 596

Viewcount: 448

Viewcount: 441

Viewcount: 532

Viewcount: 601

Viewcount: 490

Viewcount: 496

Viewcount: 489

Viewcount: 498

Viewcount: 510

Viewcount: 475

Viewcount: 509

Viewcount: 502

Viewcount: 514

Viewcount: 489

Viewcount: 633

Viewcount: 519

Viewcount: 489

Viewcount: 479

Viewcount: 502

Viewcount: 501

Viewcount: 606

Viewcount: 470

Viewcount: 479

Viewcount: 493

Viewcount: 554

Viewcount: 523

Viewcount: 615

Viewcount: 618